Homomorphic Factorization of BRDFs for High-Performance Rendering

Michael D. McCool
Jason Ang
Anis Ahmad

University of Waterloo

SIGGRAPH 2001
Outline

• Introduction
• Previous Work
• Factorized Representation
• Results
• Performance and Error
• Conclusions
Introduction

• What is a bidirectional reflectance distribution function (BRDF)?
• Why use BRDFs in real-time rendering?
BRDF

- Functional notation:
 \[f_\lambda (u, v, \hat{\omega}_o, \hat{\omega}_i) \]

- Assume shift-invariant:
 \[f_\lambda (\hat{\omega}_o, \hat{\omega}_i) \]

- Omit wavelength dependence (use RGB):
 \[f (\hat{\omega}_o, \hat{\omega}_i) \]
BRDF

- Properties of physical BRDFs:
 - Helmholtz reciprocity
 - Conservation of energy

- BRDF classes:
 - Isotropic
 - Anisotropic
Local Lighting Equation

- **Outgoing radiance from point** \(x \) **in direction** \(\hat{\omega}_o \):

\[
L_o(\hat{\omega}_o, x) = \int_{\Omega} f(\hat{\omega}_o, \hat{\omega}_i) L_i(\hat{\omega}_i, x) (\hat{\omega}_i \cdot \hat{n}) d\sigma(\hat{\omega}_i)
\]

- **Illumination from** \(N \) **point sources**:

\[
L_o(\hat{\omega}_o, x) = \sum_{k=1}^{N} f(\hat{\omega}_o, \hat{\omega}_i^k) (\hat{\omega}_i^k \cdot \hat{n}) \frac{I_k}{r_k^2}
\]
Previous Work

• **Basis summation**
 - Cabral et al., Bidirectional Reflection Functions from Surface Bump Maps (1987)
 - Ward, Measuring and Modeling Anisotropic Reflection (1992)
 - Lafortune et al., Non-Linear Approximation of Reflectance Functions (1997)
Previous Work

- **Environment mapping**
 - Cabral et al., Reflection Space Image Based Rendering (1999)
Previous Work

• Factorization
 • Fournier, Separating Reflection Functions for Linear Radiosity (1995)
 • Heidrich and Seidel, Realistic, Hardware-Accelerated Shading and Lighting (1999)
 • Kautz and McCool, Interactive Rendering with Arbitrary BRDFs using Separable Approximations (1999)
Previous Work

- **Factorization**
 - SVD approach by Kautz and McCool (1999)

\[
f(\hat{\omega}_o, \hat{\omega}_i) = \sum_{j=1}^{J} u_j(\pi_u(\hat{\omega}_o, \hat{\omega}_i)) v_j(\pi_v(\hat{\omega}_o, \hat{\omega}_i))
\]

\[
\pi_u : \Omega \times \Omega \rightarrow \mathbb{R}^2
\]

\[
\pi_v : \Omega \times \Omega \rightarrow \mathbb{R}^2
\]
Homomorphic Factorization

- Approximate f using product of positive factors:

$$f(\hat{\omega}_o, \hat{\omega}_i) \approx \prod_{j=1}^{J} p_j(\pi_j(\hat{\omega}_o, \hat{\omega}_i))$$

- Take logarithm of both sides:

$$\tilde{f}(\hat{\omega}_o, \hat{\omega}_i) \approx \sum_{j=1}^{J} \tilde{p}_j(\pi_j(\hat{\omega}_o, \hat{\omega}_i))$$
Parameterization

- Choose parameterization:
 - Want parameters that are easy to compute
 - Choice (others possible!):

\[
\tilde{f}(\omega_0, \omega_i) \approx p(\omega_o) \cdot q(\hat{h}) \cdot p(\omega_i)
\]

- Take logarithm:

\[
\tilde{f}(\omega_0, \omega_i) \approx \tilde{p}(\omega_o) + \tilde{q}(\hat{h}) + \tilde{p}(\omega_i)
\]
Data Constraints

- **Need to find** \(p \) and \(q \):
 - Set up linear constraints relating samples in \(f \) to texels in \(p \) and \(q \)
 - Use bilinear weighting factors to get subpixel precision
Data Constraints

- Data constraints can be written as:

\[
\begin{bmatrix}
\tilde{f}
\end{bmatrix} =
\begin{bmatrix}
A_p & A_q
\end{bmatrix}
\begin{bmatrix}
\tilde{p} \\
\tilde{q}
\end{bmatrix}
\]
Smoothness Constraints

- Add constraints to equate Laplacian with zero:

\[
\begin{bmatrix}
\tilde{f} \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
A_p & A_q \\
\lambda L_p & 0 \\
0 & \lambda L_q
\end{bmatrix}
\begin{bmatrix}
\tilde{p} \\
\tilde{q}
\end{bmatrix}
\]

- Ensures every texel has a constraint
- \(\lambda \) controls the smoothness of solution
Iterative Solution

- Solve using quasi-minimal residual (QMR) algorithm in IML++
 - Modified conjugate-gradient algorithm
 - Freund and Nachtigal (1991)
- Estimate an initial solution by averaging
- Apply at sequence of increasing resolutions
Encoding into Texture Map

• Divide p and q by their maximums and combine scale factors into a single colour α

• For unit-vector-valued parameters, set up texture maps as parabolic maps, hemisphere maps, or cube maps
Results

- Top to bottom: p^\prime, q^\prime parabolic texture maps (32 x 32) and α
- Left to right: satin (Poulin-Fournier analytic), leather, velvet (CUREt), garnet red, krylon blue, cayman, mystique (Cornell)
Rendering

- OpenGL 1.2.1 reconstruction

\[
L_o(\hat{\omega}_o, x) = p'(\hat{\omega}_o) \sum_{k=1}^{N} \left[2^s q'(\hat{n}^k) p'(\hat{\omega}_i^k) \right] \left[\frac{\alpha 2^{-s} I_k(\hat{\omega}_i^k \cdot \hat{n})}{r_k^2} \right]
\]

- Multitexturing and compositing

- e.g. NVIDIA GeForce 2 and ATI Radeon.
Rendering

• **NVIDIA GeForce 3 reconstruction:**

\[
L_o(\hat{\omega}_o, x) = \sum_{k=1}^{N} \left[2^s p'(\hat{\omega}_o) q'(\hat{n}^k) p'(\hat{\omega}_i^k) \right] \left[\frac{\alpha 2^{-s} I_k(\hat{\omega}_i^k \cdot \hat{n})}{r_k^2} \right]
\]

• Multitexturing and compositing
• Register combiners
• Vertex programs
Performance

- Venus model with 90752 triangles
- Pentium III 600 MHz, 256 MB, NVIDIA GeForce 3 AGP 4x @ 1280x1024x32bit
- Standard OpenGL Lambertian lighting:
 - 123 fps, 11.2 Mtri/s
- Full illumination:
 - 76 fps, 6.9 Mtri/s
Approximation Error
Extensions

• Other parameterizations

\[f(\hat{\omega}_o, \omega_i) \approx p(\hat{h} \cdot \hat{n}, \hat{h} \cdot \hat{\omega}) q(\hat{\omega}_o \cdot \hat{n}, \omega_i \cdot \hat{n}) \]

• Material mapping

\[f(u, v, \hat{\omega}_o, \omega_i) = \sum_{m=0}^{M} \alpha_m(u, v) f_m(\hat{\omega}_o, \omega_i) \]
Conclusions

- **New BRDF factorization algorithm**
 - Achieves reasonable compression ratios
 - Minimizes relative error in approximation
 - Flexible choice of parameterization
 - Results are positive factors
 - Can handle sparse data, reuse texture maps
 - Renders in real-time rates in current hardware
 - Limited to point light sources
Demo available at CAL
Acknowledgements

- Jan Kautz, Wolfgang Heidrich
- David Kirk, Matthew Papakipos, Mark Kilgard, Chris Wynn, Cass Everitt, Steve Glanville, NVIDIA
- Josée Lajoie, Kevin Moule, Martin Newell, Mira Imaging, Inc., Viewpoint Engineering
- CUReT, Cornell, Syzmon Rusinkiewicz
- NSERC, CITO